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Abstract

Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by
two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and
treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of
commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has
been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding
the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb
portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new
insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been
revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of
crops are still not well understood. New molecular technologies, such as gene microarray analyses,
quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to
understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal
virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops.
With this fundamental understanding, we will be better able to design improved non-aflatoxigenic bio-
competitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or
otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or
toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of
the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin
gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes
the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin
contamination.
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Introduction

Mycotoxins are fungal metabolites that are
capable of producing acute toxic or chronic car-
cinogenic, mutagenic, teratogenic, or estrogenic
responses in higher vertebrates and other animals
[1–3]. Within the last decade, significant advances
have been made in mycotoxin detection methods

and control strategies as well as in understanding
the biochemistry, genetics and regulation of my-
cotoxin biosynthesis. The biosynthetic pathways
for mycotoxins such as aflatoxins, fumonisms and
trichothecenes, the clustering of biosynthetic
genes, and the functions of these genes have been
elucidated in great detail [4–8]. Despite the many
advances described above, mycotoxin contami-
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nation problems are far from being solved. There
remains a vast gap in our understanding of the
coordinated global regulation of toxin formation,
of the signal transduction pathways underlying
primary and secondary metabolisms, of the biotic
and abiotic factors that affect toxin formation,
and of the interactions of mycotoxigenic fungi
and their host plants during infection. Those that
significantly impact agriculture include aflatoxins
AF produced by A. flavus and A. parasiticus;
Zearalenone and the trichothecenes (in particular
deoxynivalenol) produced by Fusarium spp.;
ochratoxins produced by A. ochraceus and Peni-
cillium viridicatum; and fumonisins produced by
Fusarium verticillioides [4, 8]. Cyclopiazonic acid
(CPA) produced by A. flavus, may also be of
concern. The FDA has estimated direct economic
losses of nearly a billion dollars a year due to
crop loss, and another half billion dollars in
mitigating costs due to the impact of only three
mycotoxins, namely aflatoxins, fumonisins, and
trichothecenes [3]. Aflatoxins, potent toxins, and
carcinogens are the most widely studied of all
mycotoxins [2, 9, 10]. It is not surprising then
that the most significant research progress
towards controlling mycotoxins has been made
with aflatoxins. Aflatoxins frequently contaminate
agricultural commodities and thus pose serious
health hazards to both humans and domestic
animals [3, 11]. Seventy-seven countries are
known to have regulations limiting mycotoxin
levels with 48 having specific regulatory levels for
total aflatoxins in foodstuffs and 21 having
regulations for aflatoxins in feedstuffs [12]. The
FDA has set limits of 20 ppb total aflatoxins for
interstate commerce of food and feed and 0.5 ppb
of aflatoxin M1 for sale of milk.

The most likely processes by which crops are
infected by A. flavus and contaminated by afla-
toxin have been reviewed [13–15]. Elimination of
pre-harvest aflatoxin contamination through the
development of novel biotechnological control
strategies [16–18] could benefit significantly by
additional knowledge of the fundamental molec-
ular and biological mechanisms that regulate the
biosynthesis of aflatoxin by the fungus; fungal
survival in the ecosystem and its ability to invade
crops [5, 10, 19]. The rapid development of high
throughput sequencing made it possible in genetic
research to advance from single gene cloning to
whole genome sequencing. The technological

breakthrough allows scientists to study the gen-
ome of an organism possibly in a very short time
frame compared with traditional genetic studies.
Tremendous advances have also been made in
understanding the genetics of four non-aflatoxi-
genic Aspergillus species, A. oryzae, A. sojae,
A. niger and A. fumigatus. The three former species
are economically important because of their
industrial applications. For example, A. oryzae
and A. niger are used in the production of
enzymes, peptides and other organic compounds,
and A. sojae is used in the fermentation of soy
sauce, which is a billion dollar industry worldwide.
In contrast, A. fumigatus is a human and animal
pathogen and is the most common cause world-
wide of human aspergillosis, an often-fatal disease
that affects primarily immunocompromised indi-
viduals. Currently, the whole genome sequencing
and/or Expressed Sequence Tag (EST) projects for
A. flavus have been completed.

Genetics of aflatoxin biosynthesis

Previous studies determined that aflatoxins are
synthesized by a polyketide metabolic pathway [5,
7, 10, 20]. Mapping of overlapping cosmid clones
of A. parasiticus and A. flavus genomic DNA
established that the genes in the aflatoxin biosyn-
thetic pathway are clustered [5, 7, 21]. In general,
the aflatoxin gene cluster in A. parasiticus and
A. flavus consists of 25 genes spanning approxi-
mately 70 kb (Figure 1). A positive regulatory
gene, aflR, coding for a sequence-specific, zinc-
finger DNA-binding protein is located in the
cluster and is required for transcriptional activa-
tion of most, if not all, of the aflatoxin structural
genes [5]. Adjacent to and divergently transcribed
from the aflR gene is aflJ. aflJ has not demon-
strated significant homology with any other genes/
proteins present in databases. Though the exact
function of aflJ is not clear at this time, it has been
shown to be necessary for expression of other
genes in the aflatoxin cluster [22, 23]. The function
of most of the aflatoxin gene products has been
deduced either by genetic or biochemical means [7,
24–27]. Of the 25 genes identified in the pathway,
only four (norA, norB, aflT, and ordB) have yet to
have the function of their protein product
determined experimentally.
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Figure 1. The gene cluster responsible for aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus. (A) Clustered genes (arrows
indicate the direction of gene transcription) and (B) the aflatoxin biosynthetic pathway. The ST biosynthetic pathway genes in
A. nidulans are indicated at the right of panel B. Arrows in panel B connect the genes to the proteins they encode. Abbreviations: NOR,
norsolorinic acid; AVN, averantin; HAVN, 5¢-hydroxy-averantin; OAVN, oxoaverantin; AVNN, averufanin; AVF, averufin; VHA,
versiconal hemiacetal acetate; VAL, versiconal; VERB, versicolorin B; VERA, versicolorinA; DMST, demethylsterigmatocystin;
DHDMST, dihydrodemethylsterigmatocystin; ST, sterigmatocystin; DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocy-
stin; DHOMST, dihydro-O-methylsterigmatocystin; AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; and AFG2, aflatoxin G2

[7].
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The mycotoxin ST is an aflatoxin precursor.
In some fungi more distantly related to A. flavus
and A. parasiticus, ST is the final metabolite.
The biosynthetic and regulatory genes required
for ST production in A. nidulans are homologous
to those required for aflatoxin production in
A. flavus and A. parasiticus and they also are
clustered [7, 28]. However, the organization of
the genes in the A. nidulans cluster is quite dif-
ferent from that in A. parasiticus and A. flavus.
The sequence identity of the clustered genes
between A. parasiticus and A. flavus is about
90–99%, but between A. parasiticus and A.
nidulans is 55-75% [7].

Transcriptional regulation of aflatoxin synthesis

Most of the 25 genes in the aflatoxin biosynthetic
pathway gene cluster (Figure 1) are regulated by a
Gal4-type 47 kDa C6-zinc binuclear cluster DNA-
binding protein, AflR [5]. AflR binds to the pal-
indromic motif 5¢-TCGN5CGA-3¢ in the promoter
region of aflatoxin structural genes. The promoter
regions of the majority of aflatoxin genes have at
least one 5¢-TCGN5CGA-3¢ binding site within
200 bp of the translation start site, though some
putative binding sites have been identified further
upstream [7, 19]. Based on comparison of 16
possible sites, the consensus binding sequence was
5¢-TCGSWVNSCGR-3¢ [29, 30]. By analogy to
most Gal4-type proteins that bind to partially
palindromic sites, AflR probably binds to its rec-
ognition site as a dimer. The gene, aflR may be
self-regulated, as well as, under the influence of
negative regulators [31–35]. Upstream elements
may be involved in negative regulation of
promoter activity of aflR [34].

A number of studies have identified a genetic
connection between aflatoxin/sterigmatocystin
biosynthesis and fungal development [36–41].
Aspergillus developmental mutants have been used
to partially elucidate the signaling pathway linking
fungal secondary metabolism and development.
The early work of Kale et al. [36, 37] recognized
that mutants defective in conidiation often lost the
ability to produce aflatoxin. This work was
extended by characterizing a G-protein-mediated
signaling cascade in A. nidulans that regulates both
asexual sporulation and ST production [42] and
the roles of cAMP and protein kinase A in both

processes [39–41]. A possible transcription regu-
latory gene, veA, has been identified in A. nidulans
and A. parasiticus that controls both toxin pro-
duction and sexual development [43, 44]. Both A.
nidulans and A. parasiticus veA mutants fail to
produce ST or aflatoxin. In addition, A. nidulans
and A. parasiticus do not produce cleistothecia
(sexual fruiting bodies harboring ascospores) and
sclerotia (asexual overwintering structures),
respectively. No significant sequence identity has
been found between veA and other genes present in
databases. Lastly, a number of genetic loci were
identified in A. nidulans mutants that resulted in
loss of ST production but had normal develop-
mental processes [45]. Complementation studies
with one of these mutants identified a gene, laeA,
that encodes an enzyme with sequence similarity to
methyltransferases and appears to be required for
expression of ST. LaeA homologs have been found
in a number of filamentous fungi. In all species
examined, disruption of laeA resulted in loss of
secondary metabolite production while overex-
pression of laeA results in hyperproduction of the
secondary metabolite [40].

Chromosomal location also affects expression
of genes in the aflatoxin cluster [46]. Previous
studies have provided evidence that epigenetic
factors also affect the developmental changes
necessary for the fungus to be able to switch from
normal vegetative growth (primary metabolism) to
secondary metabolism (aflatoxin production) and
reproductive cells (sclerotia and conidia) [40, 42,
44, 47, 48]. The subtelomeric location of the afla-
toxin gene cluster on chromosome 3 may affect the
accessibility of cluster genes to transcription fac-
tors. Chromosomal location has been shown to
affect expression of aflatoxin biosynthetic genes
[46, J. Yu, unpublished results). Boundary
elements near telomeres separate active from
inactive chromatin domains and stop the spread of
inactive chromatin. Inactive chromatin has more
methylation of lys-9 of histone H3 (H3-Me-K9)
and less H3-K9 and H4-acetylation than that of
active chromatin. Furthermore, globally acting
transcription factors, including those mediating
nitrogen, carbon, and pH regulation, affect chro-
matin organization near the site of transcription
initiation [49]. More directly, they also act as
transcription activating or inhibiting factors by
binding to sequence-specific sites in the promoter
and either complexing with other transcription
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factors or by blocking the binding of positively
acting transcription factors [50].

Effect of environmental factors on toxin synthesis

The most significant environmental factors that
influence toxin synthesis are carbon and nitrogen
sources, pH, temperature, water activity, and plant
metabolites [5, 38]. Highest levels of aflatoxin are
produced when the fungus invades the seed
embryo, where the highest levels of simple sugars
(glucose and sucrose) are present compared to
other parts of the seed, where complex carbohy-
drates predominate [51]. Aflatoxin biosynthesis has
been known to be induced by simple carbohy-
drates, such as glucose and sucrose (reviewed in
52], but not by peptone or complex sugars such as
starch. Interestingly, a hexose utilization gene
cluster (Figure 1) is located adjacent to the
aflatoxin biosynthetic cluster and may affect
expression of aflatoxin genes [53]. Nitrogen supply
is usually not a limiting factor for U.S. crop
cultivation [15], but pools of amino acids in the
plant, dependent on nitrogen, are reported to be
important in regulation of toxin formation [54–56].
Nitrate suppression of aflatoxin synthesis in some
Aspergillus isolates has been well documented
[57–59], whereas nitrogen supplied as ammonium
in media supports toxin formation. The cause of
the nitrate inhibitory effect is still uncertain, but
nitrate inhibition could be mediated by the globally
acting nitrogen source transcription factor AreA
[34, 35, 60]. AreA binds to the tetranucleotide
recognition site, GATA, in the promoters of aflR
and aflJ and affects their expression [29]. Certain
strains of A. flavus respond differently to nitrate
than do other strains, and these differences corre-
late with differences in the number of GATA sites
near the aflJ transcription start site [61].

Fungi are capable of growing over a wide pH
range. Under drought stress, physiological pH
shifts in plants could occur [62, 63]. It has been
established that aflatoxin synthesis optimally
occurs in the pH range of 3.4–5.5. Regulation of
fungal metabolism by ambient pH involves a
globally acting transcription factor encoded by
pacC that is post-synthetically modified by a
pH-sensing protease [64, reviewed in 65]. A num-
ber of PacC-binding sites are located in the
promoter regions of some aflatoxin biosynthesis

genes and could be involved in their negative reg-
ulation at basic pH [29, 66]. Neither high temper-
ature nor drought stress alone will lead to
increased concentrations of aflatoxin [67]. It is not
known whether these factors are conducive for the
fungus to initiate the infection process in crops.
High maximum and high minimum daily temper-
atures, especially during periods of high net
evaporation, are more important for the develop-
ment of aflatoxin than humidity or average
precipitation during the same period. The ideal
temperature for aflatoxin production is 29–30 �C
[15, 68]. Aflatoxin production is significantly
decreased at temperatures below 25 �C, but is
completely inhibited at 37 �C or above. Drought
stress can increase the percentage of seed infected.
The higher the water activity, the better are the
conditions for fungal growth and toxin synthesis.
At water activity below 0.85, the growth of the
fungus and its spore germination rates are con-
siderably slowed [15]. At water activity between
0.70–0.75, growth and spore germination cease.

Natural plant metabolites affect toxin production

and fungal development

Earlier research efforts in this, as well as other
labs, have shown that plant volatiles can alter
either Aspergillus growth or aflatoxin production,
i.e., volatile aldehydes and other compounds from
neem leaf [69, 70], cotton leaf [71] and corn-leaf
[72]. Anthocyanins and related flavonoids also
affect aflatoxin biosynthesis [73]. In some cases,
growth was not significantly affected by various
metabolites, while aflatoxin biosynthesis and fun-
gal development were significantly decreased [71,
74–77].

The plant oxylipins 13-hydroperoxylinoleic
acid and 9-hydroperoxy linoleic acid, as well as
their precursor, linoleic acid, affect sexual and
asexual sporulation in A. nidulans, sclerotial
development, and toxin synthesis [78–82]. The
conversion of oleic acid (18:1) to linoleic acid
(18:2) is a critical biosynthetic step in the gen-
eration of sporogenic psi factors. This conversion
is mediated by a delta-12 desaturase. Calvo et al.
[83] identified and cloned the delta-12 desaturase
(odeA) gene from A. nidulans and A. parasiticus.
An A. parasiticus odeA mutant demonstrated
delayed spore germination, a twofold reduction
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in growth, a reduced level of conidiation, and
complete loss of sclerotial development com-
pared to the wild-type fungus [84]. It is possible
that the sporogenic properties of linoleic acid
and hydroperoxylinoleic acids occur through
conversion of these molecules into psi factor or
by interfering with and/or mimicking psi factor
due to high structural similarity between these
18:2 fatty acids.

Aflatoxin biosynthesis is inhibited by gallic acid,
generated from hydrolysis of tannic acid in tree nuts
[85]. During invasion by A. flavus, fungal tannase
releases gallic acid from the tannic acid present in
the pellicle of walnut and the hull of pistachio.
Gallic acid is an antioxidant andmay suppress some

of the oxidative steps required for aflatoxin
biosynthesis [86].

Effects of AflR as a positive regulator of
aflatoxin biosynthesis, as well as the effects of
plant metabolites and their environmental and
nutritional factors on fungal development, are
beginning to be understood. However, there is still
much that we do not know about the mechanisms
by which global regulatory genes and signaling
pathways control aflatoxin gene expression and
fungal development, particularly during crop
invasion. These answers can be rapidly obtained
through genomics of the fungus.

Genomics

Aspergillus flavus genomics is aimed at under-
standing the genetic control and regulation of
toxin production by this important aflatoxigenic
fungus as well as the evolutionary process in
Aspergillus section Flavi. The relationship between
toxin production and its survival, the relationship
between primary and secondary metabolism, and
the regulation and coordination of aflatoxin for-
mation by potential regulator(s) upstream of aflR
are important factors to understand in order to
control aflatoxin contamination. More impor-
tantly, we need to understand what the mechanism
of toxin production is in response to environ-
mental conditions like nutrition status of crops,
temperature, water stress, pH, and volatile
compounds from plants.

The complete A. flavus expressed sequence tag
(EST) sequence, DNA microarrays based on this
sequence, and the entire sequence of the A. flavus
genome are now available. The Institute for
Genomic Research (TIGR), in conjunction with
the Food and Feed Safety (FFS) Unit of the
USDA-ARS, Southern Regional Research Center
(SRRC), sequenced 26,000 clones (GenBank
accession #: CO133039 to CO152656) and identi-
fied 7218 unique ESTs [87]. Thirty percent of the
ESTs had related sequences in the GenBank
Database. The fully annotated EST data set was
released to the public by Gene Index constructed
at TIGR (http://www.tigr.org/tigr-scripts/tgi/T
index.cgi?species = a_flavus). Annotation has
identified many genes that are potentially involved
directly or indirectly in aflatoxin production

Table 1. A. flavus gene (EST) ontology assignments [87]*

Molecular Function 1015 TC/singleton

Enzyme 401

Binding 231

Transporter 110

Structural molecule 74

Molecular function unknown 65

Signal transducer 33

Transcription regulator 24

Translation regulator 23

Obsolete molecular function 18

Chaperone 15

Enzyme regulator 13

Cell adhesion molecule 3

Defense/immunity protein 2

Protein tagging 1

Motor 1

Apoptosis regulator 1

Cellular Component 1378 TC/singleton

Cell 1278

Cellular component unknown 72

Extracellular 15

Unlocalized 7

Obsolete molecular function 4

Cell wall 2

Biological Process 2376 TC/singleton

Cell growth and/or maintenance 2090

Cell communication 169

Development 38

Obsolete molecular function 31

Biological process unknown 19

Death 13

Physiological processes 12

Behavior 4

*The identified unique ESTs were blasted against a non-
redundant protein database. The classification of the molecular
functions are shown in this table.
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(global regulation, signal transduction, pathoge-
nicity, virulence, and fungal development; 87,
Table 1).

Gene profiling using microarrays is a powerful
tool to detect a whole set of genes transcribed
under specific conditions and to study the biolog-
ical functions of these interested genes, gene
expression and regulation, and to identify factors
involved in plant-microbe (crop-fungus) interac-
tion. DNA microarrays have been constructed at
TIGR for functional studies of A. flavus biology.
The high density and high quality microarray of
6684 short amplicons representing 5002 unique
gene elements include the 31 known aflatoxin
cluster genes. Gene expression profiling experi-
ments by microarrays have been used by our group
and others to successfully identify differentially-
expressed genes associated with aflatoxin
production in A. flavus and A. parasiticus grown
under different nutritional and environmental
conditions [87–90]. Near-isogenic developmental
and secondary metabolic mutants of A. flavus and
A. parasiticus are being used in microarray studies
that will not require shifts in growth media. This
will allow us to more accurately select specific
subsets of differentially-expressed genes that are
involved in aflatoxin production and fungal
development.

The FFS Research Unit of SRRC is also par-
ticipating in a national project to sequence the
entire A. flavus genome spearheaded by Dr. Gary
Payne of North Carolina State University, with
the sequencing being done at TIGR (Dr. W.
Nierman leading the effort). Karyotyping studies
by CHEF gel had earlier indicated that there are
about 6–8 chromosomes in the A. flavus genome
ranging in size from 3 to ‡ 7 Mb each [91, 92]. By
referencing of the karyotyping data of A. oryzae,
[which contains 8 chromosomes, 93], a close rela-
tive of A. flavus or the domesticated strain of
A. flavus as some scientists claim, it appears that
there are most likely 8 chromosomes in A. flavus.
The estimated genome size is about 33–36 Mb
containing approximately 10,000–12,000 func-
tional genes. Based on our research experiences
with Aspergillus, the A. flavus genome is com-
pacted with less duplicated sequence or multiple
copies of genes. The non-coding sequences
between genes are much shorter than in higher
plants and contain only a few small introns within
each gene, if any. The 36.2 Mb A. flavus genome

sequence data are available to the public at the
TIGR web site (http://www.tigr.org) and at http://
www.aspergillusflavus.org.

Toxigenic potential of other Aspergillus spp

Aspergillus flavus and A. parasiticus are not known
to reproduce sexually, and isolates of different
vegetative compatibility groups (VCGs) cannot
recombine, although phylogenetic incongruence
based on DNA sequence alignments has been
regarded as evidence that genetic recombination
can occur [94–96]. The frequency of such events, if
confirmed, is unknown.

Until recently, there have been very few ver-
ifiable reports of aflatoxin production by fungi
other than A. flavus, A. parasiticus, and A. nom-
ius. Studies have shown that an aflatoxin gene
cluster is present in some strains of A. oryzae
and A. sojae [97–100]. However, the genes in the
two species are not transcribed [98, 100–103].
There are a number of Aspergillus species that
produce aflatoxin but are not classified as section
Flavi [for a detailed review see 104]. At present,
these non-section Flavi isolates are not consid-
ered to be of significance with respect to con-
tamination of agricultural crops. These studies
could provide some insight into the evolutionary
significance of aflatoxin production.

The use of biocompetitive agents to control toxin

contamination

Microbial interference with aggressive non-afla-
toxigenic Aspergillus is being developed as a way
to reduce contamination of peanut, tree nuts, and
cotton [105, 106]. The biocompetitive strains were
chosen from atoxigenic A. flavus field isolates.
However, efficacy of the competitor fungal strain
could be improved through genetic engineering
based on knowledge gained with understanding
the molecular regulation of toxin synthesis.
Fungal factors that determine the ability of an
A. flavus strain to compete and overwinter in the
soil, plant, and organic debris are still not
known, and could be determined through fungal
genomics and microarray analyses.

161



PCR-based identification of aflatoxigenic fungi

It is estimated that 25-50% of the crops
harvested worldwide are contaminated with my-
cotoxins [107]. The serious health and economic
consequences of mycotoxin contamination have
created a need for rapid, sensitive, and reliable
techniques to detect mycotoxins and mycotoxin
producers within foodstuffs. A number of highly
sensitive techniques have been developed for
mycotoxin detection, including HPLC, GC-MS,
and immunological-based assays. However,
detection of mycotoxigenic fungi has relied, for
the most part, on time consuming isolation and
culturing techniques that require taxonomical
expertise. The advent of a number of PCR-based
techniques now allows for the rapid and reliable
identification and quantification of fungi in
foodstuffs [107–109]. Attempts to develop PCR-
based methods for detection of aflatoxigenic
fungi (A. flavus and A. parasiticus) are underway
[110–113]. However, these methods utilize prim-
ers for aflatoxin genes that are not necessarily
unique to aflatoxigenic fungi and have not been
tested for reproducibility on a number of dif-
ferent contaminated commodities. Information
gained from our studies on genomics of afla-
toxigenic fungi will also allow for development
of rapid, sensitive, and highly accurate method
for detection of aflatoxigenic fungi present in a
number of different, complex foodstuffs and also
from soil samples.

It has been estimated that only about 25% of
fungal species have been identified; therefore, it is
probable that many fungi have not been discov-
ered that possess some or all of the genes necessary
for producing aflatoxin. We propose to utilize
sequence information from the aflatoxin/ST genes
of A. flavus and Em. nidulans in conjunction with
sequence data that we are generating from afla-
toxigenic, non-section Flavi isolates to design
‘‘universal’’ primers for PCR-based methods of
identifying potential aflatoxigenic fungal isolates.
Once these isolates are identified and shown to
produce aflatoxin, studies of fungal ‘‘fitness’’
under adverse environmental conditions will be
performed to determine if aflatoxin production
provides an adaptive advantage for fungal survival
and invasion of crops, particularly in view of the
fact that many natural isolates of A. flavus do not
produce aflatoxins [114].

Conclusion

Anattempthas beenmade in this review tohighlight
that A. flavus genomics has provided researchers
with a rapid and effective method for identification
of genes potentially involved in aflatoxin formation
and infection of crops byA. flavus. In addition, with
the availability of the A. oryzae whole genome
sequence a close relative ofA. flavus, which is used in
industrial fermentation for enzyme production that
produce no aflatoxins, andofA. fumigatus, a human
pathogen and a non-aflatoxin producer, these will
be very helpful to identify genes specifically used by
A. flavus for aflatoxin formation, for fungal inva-
sion of crops and for fungal survival in the field
through comparative genomics.
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